ViDRILO: The Visual and Depth Robot Indoor Localization with Objects information dataset
Experimentation Results
In order to analyze the dataset, we performed a set of experiments using the toolbox provided.
- Classification Models
- Support Vector Machines (SVM)
- We have used the libSVM implementation with an exponential chi-square kernel
- k-Nearest Neighbor (kNN)
- Matlab implementation with k=7
- Random Forest
- Matlab implementation with 50 classification trees
- Visual Descriptors
- Pyramid Histogram of Oriented Gradients (PHOG)
- We used the code proposed by Anna Bosch and Andrew Zisserman: Phog Code We used 2 levels and 30 bins.
- Citation: A. Bosch, et al. (2007). Representing Shape with a Spatial Pyramid Kernel. In Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408.
- GIST
- We used the code proposed by Aude Oliva and Antonio Torralba: Gist Code
- Citation: A. Oliva & A.Torralba (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International journal of computer vision 42(3):145–175.
- Greyscale Histogram
- The perspective image is directly mapped into a 256 bins histogram
- Depth Descriptors
- Ensemble of Shape Function (ESF)
- We used the implementation included in the PCL library
- Citation: W. Wohlkinger & M. Vincze (2011). Ensemble of shape functions for 3D object classification. In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, pp. 2987–2992.
- Deph Histogram
- The RGB-D image is directly mapped into a 30 bins histogram using the z-coordinate
Room Classification - Accuracy (% of test rooms correctly classified)
SVM | kNN | Random Forest | |||||||||||||||||||
PHOG | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 90.8 | 56.5 | 52.1 | 63.3 | 33.0 | TRAIN | S1 | 91.9 | 51.5 | 48.4 | 58.6 | 31.7 | TRAIN | S1 | 100 | 61.1 | 52.0 | 61.9 | 31.8 | |
S2 | 64.8 | 97.4 | 62.2 | 70.3 | 27.4 | S2 | 60.1 | 97.3 | 56.5 | 65.1 | 26.2 | S2 | 63.1 | 100 | 57.1 | 65.8 | 30.2 | ||||
S3 | 46.0 | 61.9 | 94.2 | 55.1 | 23.5 | S3 | 45.4 | 58.4 | 96.3 | 46.3 | 22.3 | S3 | 52.8 | 59.0 | 98.3 | 47.2 | 28.2 | ||||
S4 | 65.3 | 70.0 | 51.9 | 96.8 | 30.8 | S4 | 61.7 | 65.1 | 47.8 | 97.3 | 28.8 | S4 | 73.0 | 69.7 | 56.8 | 98.3 | 28.6 | ||||
S5 | 44.5 | 43.1 | 37.5 | 39.3 | 98.7 | S5 | 32.7 | 39.7 | 32.5 | 30.1 | 98.2 | S5 | 36.3 | 33.7 | 26.7 | 32.5 | 99.2 | ||||
GIST | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 98.7 | 64.4 | 61.0 | 67.8 | 35.0 | TRAIN | S1 | 93.8 | 65.5 | 58.9 | 71.3 | 34.3 | TRAIN | S1 | 100 | 62.9 | 57.1 | 64.6 | 35.4 | |
S2 | 67.1 | 99.6 | 61.1 | 72.9 | 33.3 | S2 | 67.8 | 97.6 | 65.0 | 73.4 | 25.8 | S2 | 63.2 | 100 | 58.9 | 70.0 | 32.8 | ||||
S3 | 56.1 | 59.8 | 99.5 | 55.3 | 32.1 | S3 | 52.8 | 59.0 | 98.3 | 47.2 | 28.2 | S3 | 52.0 | 58.1 | 100 | 49.2 | 31.2 | ||||
S4 | 69.3 | 71.5 | 56.3 | 99.7 | 33.3 | S4 | 73.0 | 69.7 | 56.8 | 98.3 | 28.6 | S4 | 63.0 | 66.0 | 52.8 | 100 | 28.9 | ||||
S5 | 53.2 | 46.9 | 43.5 | 46.4 | 99.7 | S5 | 34.3 | 33.7 | 26.7 | 32.5 | 99.2 | S5 | 44.0 | 38.0 | 33.0 | 29.0 | 100 | ||||
GrayScale Histogram | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 73.9 | 58.4 | 51.1 | 58.6 | 38.3 | TRAIN | S1 | 88.0 | 53.3 | 45.0 | 51.7 | 30.3 | TRAIN | S1 | 100 | 59.6 | 49.8 | 58.2 | 34.0 | |
S2 | 60.7 | 82.9 | 53.0 | 57.8 | 37.8 | S2 | 55.4 | 93.4 | 48.1 | 49.8 | 30.8 | S2 | 58.1 | 100 | 50.9 | 52.5 | 32.1 | ||||
S3 | 50.2 | 50.9 | 86.6 | 48.4 | 36.9 | S3 | 50.3 | 49.6 | 92.6 | 47.0 | 28.3 | S3 | 47.8 | 51.3 | 100 | 48.3 | 31.0 | ||||
S4 | 56.6 | 55.4 | 50.2 | 87.4 | 33.0 | S4 | 48.5 | 45.7 | 40.8 | 94.9 | 24.2 | S4 | 56.1 | 54.3 | 49.8 | 100 | 28.6 | ||||
S5 | 44.7 | 43.5 | 39.4 | 37.8 | 84.7 | S5 | 32.1 | 29.6 | 26.6 | 33.0 | 96.0 | S5 | 36.8 | 39.4 | 35.3 | 30.6 | 100 | ||||
ESF | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 68.9 | 61.9 | 57.0 | 59.9 | 35.2 | TRAIN | S1 | 82.6 | 57.4 | 54.1 | 59.8 | 34 | TRAIN | S1 | 100 | 64.8 | 63.0 | 64.2 | 36.2 | |
S2 | 64.5 | 78.2 | 61.4 | 63.3 | 34.2 | S2 | 58.5 | 91.8 | 65.3 | 65.3 | 30.3 | S2 | 64.1 | 100 | 70.2 | 67.1 | 34.2 | ||||
S3 | 59.5 | 64.7 | 81.0 | 62.3 | 34.3 | S3 | 55.9 | 63.5 | 90.9 | 62.3 | 29.3 | S3 | 61.6 | 65.8 | 100 | 65.6 | 34.5 | ||||
S4 | 63.5 | 65.3 | 65.5 | 80.1 | 36.7 | S4 | 61.0 | 61.0 | 67.7 | 93.4 | 32.2 | S4 | 67.1 | 69.3 | 73.8 | 100 | 35.6 | ||||
S5 | 49.6 | 47.0 | 46.6 | 46.8 | 84.2 | S5 | 44.5 | 39.2 | 38.7 | 36.9 | 95.1 | S5 | 52.0 | 48.2 | 48.6 | 49.8 | 100 | ||||
Depth Histogram | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 71.2 | 59.3 | 54.6 | 61.3 | 38.2 | TRAIN | S1 | 77.7 | 55.2 | 50.3 | 56.3 | 28.5 | TRAIN | S1 | 98.5 | 61.6 | 58.0 | 62.2 | 33.1 | |
S2 | 60.2 | 79.1 | 32.1 | 62.7 | 36.7 | S2 | 56.7 | 86.7 | 59.5 | 59.7 | 28.6 | S2 | 60.1 | 98.1 | 67.2 | 64.1 | 33.2 | ||||
S3 | 57.6 | 60.8 | 82.7 | 60.0 | 37.6 | S3 | 54.7 | 59.0 | 87.9 | 59.4 | 29.1 | S3 | 57.9 | 62.4 | 98.8 | 64.1 | 31.5 | ||||
S4 | 62.7 | 52.6 | 62.9 | 81.9 | 32.7 | S4 | 58.7 | 61.1 | 63.8 | 88.6 | 26.8 | S4 | 63.4 | 65.0 | 70.3 | 98.7 | 30.9 | ||||
S5 | 47.6 | 48.4 | 44.4 | 47.4 | 87.3 | S5 | 41.8 | 39.4 | 34.0 | 36.6 | 93.8 | S5 | 45.0 | 43.3 | 40.5 | 45.3 | 99.3 |
Object Recognition - F1 Score (2* (PREC*REC)/(PREC+REC))
SVM | kNN | Random Forest | |||||||||||||||||||
PHOG | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 1.00 | 0.36 | 0.37 | 0.43 | 0.37 | TRAIN | S1 | 0.91 | 0.39 | 0.39 | 0.42 | 0.38 | TRAIN | S1 | 1.00 | 0.24 | 0.23 | 0.31 | 0.18 | |
S2 | 0.35 | 1.00 | 0.59 | 0.54 | 0.21 | S2 | 0.40 | 0.96 | 0.53 | 0.49 | 0.34 | S2 | 0.16 | 1.00 | 0.36 | 0.43 | 0.02 | ||||
S3 | 0.27 | 0.49 | 1.00 | 0.34 | 0.21 | S3 | 0.36 | 0.48 | 0.95 | 0.36 | 0.27 | S3 | 0.20 | 0.36 | 1.00 | 0.26 | 0.09 | ||||
S4 | 0.48 | 0.53 | 0.37 | 1.00 | 0.18 | S4 | 0.46 | 0.48 | 0.35 | 0.95 | 0.24 | S4 | 0.24 | 0.33 | 0.24 | 1.00 | 0.04 | ||||
S5 | 0.44 | 0.23 | 0.27 | 0.25 | 1.00 | S5 | 0.40 | 0.31 | 0.36 | 0.29 | 0.98 | S5 | 0.40 | 0.22 | 0.25 | 0.30 | 1.00 | ||||
GIST | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 1.00 | 0.45 | 0.36 | 0.55 | 0.37 | TRAIN | S1 | 0.93 | 0.46 | 0.45 | 0.64 | 0.40 | TRAIN | S1 | 1.00 | 0.35 | 0.24 | 0.38 | 0.34 | |
S2 | 0.40 | 1.00 | 0.42 | 0.53 | 0.14 | S2 | 0.53 | 0.97 | 0.56 | 0.63 | 0.26 | S2 | 0.33 | 1.00 | 0.33 | 0.37 | 0.15 | ||||
S3 | 0.28 | 0.40 | 1.00 | 0.34 | 0.13 | S3 | 0.38 | 0.44 | 0.97 | 0.42 | 0.25 | S3 | 0.27 | 0.39 | 1.00 | 0.33 | 0.11 | ||||
S4 | 0.57 | 0.57 | 0.43 | 1.00 | 0.26 | S4 | 0.66 | 0.61 | 0.49 | 0.97 | 0.34 | S4 | 0.45 | 0.47 | 0.33 | 1.00 | 0.23 | ||||
S5 | 0.44 | 0.26 | 0.22 | 0.32 | 1.00 | S5 | 0.42 | 0.34 | 0.37 | 0.41 | 0.99 | S5 | 0.42 | 0.23 | 0.25 | 0.28 | 1.00 | ||||
GrayScale Histogram | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 0.99 | 0.42 | 0.25 | 0.36 | 0.36 | TRAIN | S1 | 0.86 | 0.35 | 0.17 | 0.32 | 0.36 | TRAIN | S1 | 1.00 | 0.29 | 0.11 | 0.27 | 0.31 | |
S2 | 0.41 | 1.00 | 0.24 | 0.35 | 0.30 | S2 | 0.41 | 0.90 | 0.19 | 0.28 | 0.34 | S2 | 0.32 | 1.00 | 0.13 | 0.23 | 0.21 | ||||
S3 | 0.25 | 0.27 | 0.99 | 0.31 | 0.24 | S3 | 0.25 | 0.24 | 0.90 | 0.30 | 0.28 | S3 | 0.12 | 0.14 | 1.00 | 0.14 | 0.11 | ||||
S4 | 0.34 | 0.28 | 0.29 | 0.99 | 0.33 | S4 | 0.34 | 0.30 | 0.25 | 0.92 | 0.32 | S4 | 0.29 | 0.19 | 0.24 | 1.00 | 0.26 | ||||
S5 | 0.32 | 0.27 | 0.25 | 0.31 | 1.00 | S5 | 0.31 | 0.29 | 0.26 | 0.25 | 0.97 | S5 | 0.31 | 0.22 | 0.15 | 0.25 | 1.00 | ||||
ESF | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 1.00 | 0.47 | 0.55 | 0.43 | 0.40 | TRAIN | S1 | 0.80 | 0.42 | 0.51 | 0.47 | 0.38 | TRAIN | S1 | 1.00 | 0.40 | 0.44 | 0.40 | 0.33 | |
S2 | 0.53 | 1.00 | 0.65 | 0.54 | 0.39 | S2 | 0.44 | 0.88 | 0.59 | 0.51 | 0.37 | S2 | 0.45 | 1.00 | 0.56 | 0.45 | 0.30 | ||||
S3 | 0.49 | 0.53 | 1.00 | 0.55 | 0.34 | S3 | 0.45 | 0.50 | 0.90 | 0.50 | 0.36 | S3 | 0.44 | 0.47 | 1.00 | 0.50 | 0.26 | ||||
S4 | 0.61 | 0.54 | 0.67 | 1.00 | 0.36 | S4 | 0.53 | 0.51 | 0.60 | 0.90 | 0.40 | S4 | 0.46 | 0.43 | 0.59 | 1.00 | 0.25 | ||||
S5 | 0.38 | 0.36 | 0.42 | 0.35 | 1.00 | S5 | 0.47 | 0.33 | 0.38 | 0.32 | 0.96 | S5 | 0.36 | 0.35 | 0.38 | 0.32 | 1.00 | ||||
Depth Histogram | TEST | TEST | TEST | ||||||||||||||||||
S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 | |||||||
TRAIN | S1 | 0.99 | 0.43 | 0.50 | 0.52 | 0.36 | TRAIN | S1 | 0.67 | 0.38 | 0.41 | 0.41 | 0.24 | TRAIN | S1 | 0.99 | 0.38 | 0.44 | 0.50 | 0.27 | |
S2 | 0.44 | 0.99 | 0.59 | 0.55 | 0.34 | S2 | 0.36 | 0.80 | 0.48 | 0.49 | 0.26 | S2 | 0.36 | 0.99 | 0.56 | 0.52 | 0.23 | ||||
S3 | 0.40 | 0.49 | 0.99 | 0.54 | 0.31 | S3 | 0.34 | 0.42 | 0.83 | 0.46 | 0.26 | S3 | 0.36 | 0.48 | 1.00 | 0.57 | 0.26 | ||||
S4 | 0.44 | 0.48 | 0.63 | 1.00 | 0.31 | S4 | 0.39 | 0.46 | 0.55 | 0.82 | 0.25 | S4 | 0.35 | 0.43 | 0.57 | 1.00 | 0.20 | ||||
S5 | 0.31 | 0.30 | 0.35 | 0.32 | 1.00 | S5 | 0.26 | 0.30 | 0.32 | 0.30 | 0.94 | S5 | 0.36 | 0.31 | 0.35 | 0.34 | 1.00 |